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Traveling Pulses and Threshold Solutions

Morris-Lecar System

� Conductancemodel for voltage (V ) and potassium gating (n)

Vt = δVxx − [ICa(V ) + IK(V, n) + IL(V )] + Iapp
nt = ε (n∞(V ) − n) /τn(V )

→ Reaction-diffusion system: Ut = DUxx + F (U),U = (V, n)T

� Saddle-node bifurcation at ε = εSN :
� Stable fast pulse: Uf(x, t)
� Unstable slow pulse: Us(x, t)

� Cardiac tissue is an excitable media
� Subthreshold Input: Decays to rest
� Superthreshold Input: Traveling pulse 0 0.2 0.4 0.6 0.8 1
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Threshold solution: separatesbasinsof attraction for fast pulse and rest state

� ε∗ < ε < εSN : Slow pulse

� ε < ε∗ : 1D spiral wave
� Infinite series of “reflections”
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Figure 1. 1D spiral wave (unstable)

!∗ !"#
!

A

Favorable Region:
§ Traveling waves exist
§ Reflections do not exist

Stable rest state

Stable fast

Unstable slow

1D spiral
A

Initial condition

m
V

x

Figure 2. (left) Schematic of bifurcation diagram. (right) Initial conditions.

Ability for waves to reflect↔ Existence of 1D spiral

� Reflected waves associated with 1D spirals are thought to initiate fatal

cardiac arrhythmias

Reseach Goals

The aim of this research is to investigate how biophysical processes influ-

ence the existence of the 1D spiral and thus contribute to the onset reflec-

tion mediated arrhythmia. Specifically,

� Determine how the “favorable region” depends on system parameters
� Understand the global bifurcation structure
� Identify how common drug therapies alter 1D spiral existence

One-Dimensional SpiralWave as a Source Defect
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Figure 3. Diagram of antisymmetric source defect.

� 1D spiral wave is a T -periodic
spatiotemporal anti-symmetric

source defect

� Unstable core that alternately

sheds stable periodic wave trains

U∞(κx − ωt) into the far-field

Numerical Computations

� Exploit core and far-field structure to solve for source defectU∗(x, t) as solution to
ωUτ = DUxx + F (U), (x, τ ) ∈ [−L, L] × S1

with U∗(x, t) = W (x, ωt) + χ(x)U∞ (κx − ωt)

� At bifurcation point ε = ε∗: Heteroclinic connection forms between slow pulse and

counterpropagating fast-slow pair

� Solve for the heteroclinic connection as a

spatiotemporal pattern
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Dependence of Bifurcations on System Parameters

� Goal: Find parameter range with a large favorable region: ε∗ � εSN .
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Figure 4. Central figure shows locations of ε∗ and εSN , with circles indicating low parameter values. Green

shaded area represents large favorable region, with ε∗ < 1
2εSN . Outside panels indicate relation of ε∗ & εSN .

Proposed Heteroclinic Bifurcation Structure

� Source defect arises from rearrangement ofW u (Us)
� dimW u (Us) = dimW u (U∗) = 1
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Figure 5. Schematic of predicted rearrangement of heteroclinic connections near ε = ε∗ on a

periodic spatial domain.

Numerical Evidence of a Heteroclinic Bufurcation

� Period scaling consistent with heteroclinic bifurcation: T ∼ log(ε∗ − ε)
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Figure 6. Temporal frequency approaching ε∗. Insets show spatiotemporal pattern at

indicated point along the continuation curve.

Outcomes

� Additional evidence for global bifurcation: scaling of temporal period
� Preliminary understanding of dependence of ε∗ and εSN on system

parameters
� Numerical methods for computing source defect and bifurcation point

Next Steps

� Continue systematic study for favorable parameter regimes

� Extend results to biophysically realistic models of cardiac tissue

� Identify how drug therapies deter or promote reflections

� Confirm the structure of the global bifurcation
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