One-Dimensional Spiral Waves, Source Defects, and Initiation of Cardiac Arrhythmia
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Traveling Pulses and Threshold Solutions

Morris-Lecar System

Conductance model for voltage (V') and potassium gating (n)

Vi= 0V — Lca(V)+ Ig(Vin) + I.(V)] + Lipp
ng = € (ne(V) —n) /7(V)

— Reaction-diffusion system: U; = DU,, + F(U),U = (V,n)!
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Saddle-node bifurcationate = egn :
Stable fast pulse: Uy(z, t)

Unstable slow pulse: Ug(z, t)

Cardiac tissue is an excitable media
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Figure 1. 1D spiral wave (unstable)

Favorable Region:
= Traveling waves exist

= Reflections do not exist
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Figure 2. (left) Schematic of bifurcation diagram. (right) Initial conditions.

Ability for waves to reflect <+ Existence of 1D spiral

Reflected waves associated with 1D spirals are thought to initiate fatal
cardiac arrhythmias

Reseach Goals

The aim of this research is to investigate how biophysical processes influ-
ence the existence of the 1D spiral and thus contribute to the onset reflec-
tion mediated arrhythmia. Specifically,

Determine how the “favorable region” depends on system parameters
Understand the global bifurcation structure
dentify how common drug therapies alter 1D spiral existence
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One-Dimensional Spiral Wave as a Source Defect
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Figure 3. Diagram of antisymmetric source defect.

Numerical Computations

1D spiral wave is a T-periodic
spatiotemporal anti-symmetric
source defect

Unstable core that alternately
sheds stable periodic wave trains
Uy (kx — wt) into the far-field

Exploit core and far-field structure to solve for source defect U, (x, t) as solution to
wU, = DU,, + F(U), (z,7) € [-L, L] x &'

with U(z,t) = W(x,wt)

X(2)Us (kX — wt)

At bifurcation point € = ¢,: Heteroclinic connection forms between slow pulse and

counterpropagating fast-slow pair

Solve for the heteroclinic connection as a

spatiotemporal pattern
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Dependence of Bifurcations on System Parameters

Proposed Heteroclinic Bifurcation Structure

Source defect arises from rearrangement of W* (Us)
dim W (Us) = dimW" (U,) = 1
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Figure 5. Schematic of predicted rearrangement of heteroclinic connections near € = €, on a
periodic spatial domain.
Numerical Evidence of a Heteroclinic Bufurcation
Period scaling consistent with heteroclinic bifurcation: T' ~ log(e, — €)
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Figure 6. Temporal frequency approaching e,. Insets show spatiotemporal pattern at
indicated point along the continuation curve.

Outcomes

Goal: Find parameter range with a large favorable region: €, < egn.
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Figure 4. Central figure shows locations of e, and egy, with circles indicating low parameter values. Green
shaded area represents large favorable region, with e, < %GSN. Outside panels indicate relation of e, & egp.

Additional evidence for global bifurcation: scaling of temporal period
Preliminary understanding of dependence of €, and egy on system
Darameters

Numerical methods for computing source defect and bifurcation point

Next Steps

Continue systematic study for favorable parameter regimes
Extend results to biophysically realistic models of cardiac tissue
|[dentify how drug therapies deter or promote reflections
Confirm the structure of the global bifurcation
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